
Scalable HDF5

Quincey Koziol
ATPESC
July 31, 2020
koziol@lbl.gov

Why Use HDF5?

• Have you ever asked yourself:
– How will I deal with one-file-per-process in the

exascale era?
– Do I need to be an “MPI and Lustre Pro” to do my

research?
– Why is my checkpoint taking so long?

• HDF5 hides I/O complexity so you can
concentrate on your science
– Optimized I/O to single shared file*

* Prototypes of “multi-file” HDF5 storage are under development as well.

Goals

• HDF5 Overview
• HDF5 Programming Overview
• Parallel HDF5
• Intro to Scalable HDF5

WHAT IS HDF5?

What is HDF5?

• HDF5 == Hierarchical Data Format, v5

• Open file format
– Designed for high volume and complex data

• Open source software
– Works with data in the format

• An extensible data model
– Structures for data organization and specification

HDF5 is like …

HDF5 is designed …

• for high volume and/or complex data

• for every size and type of system (portable)

• for flexible, efficient storage and I/O

• to enable applications to evolve in their use
of HDF5 and to accommodate new models

• to support long-term data preservation

HDF5 Ecosystem

Fi
le

 F
or

m
at

Li
br

ar
y

Da
ta

 M
od

el
Do

cu
m

en
ta

tio
n

…

Supporters

…
To

ol
s

HDF5 DATA MODEL

HDF5 Data Model

File

Dataset Link

Group

Attribute Dataspace

DatatypeHDF5
Objects

HDF5 File

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

An HDF5 file is a
container that
holds data objects.

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

HDF5 Dataset

• HDF5 datasets organize and contain data elements.
• HDF5 datatype describes individual data elements.
• HDF5 dataspace describes the logical layout of the data elements.

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for a single data
element and the array dimensions

3

Rank

Dim[2] = 5

Dimensions

Dim[0] = 7
Dim[1] = 4

HDF5 Dataspace

HDF5 Dataset Elements

• Describes the logical layout of the elements in an
HDF5 dataset
– NULL

• No elements (i.e., the empty / null set)
– Scalar

• Single element (a “point”, without dimensionality)
– Simple (most common)

• A rectangular array:
– Rank = number of dimensions
– Dimension sizes = number of elements in each dimension
– Maximum number of elements in each dimension

» may be fixed or unlimited

Extreme Scale Computing Argonne

HDF5 Dataspace

HDF5 Dataspace – Two Roles

Spatial information for Datasets and Attributes:
– Rank and Dimension sizes
– Permanent part of object definition

Partial I/O: Dataspace and selection describe application’s
data buffer and the elements participating in I/O

Rank = 2
Dimensions = 4 x 6

Dataspace:
Rank = 1
Dimension = 10 Start = 5

Count = 3
Selection:

• Describe the individual data elements in an HDF5
dataset or attribute

• Wide range of datatypes supported:
– Integer
– Float
– Enum
– Array (similar to matrix in math)
– Variable-length sequence (e.g., strings, C++ vectors)
– Compound (similar to C structs)
– User-defined (e.g. 12-bit integer, 16-bit float, etc.)
– More …

Extreme Scale Computing HDF5

HDF5 Datatypes

Dataspace: Rank = 2
Dimensions = 3 x 5

Datatype: 32-bit Integer

3

5

12

Note that this is
declared in C as:
“array[5][3]”
and as “array(3)(5)”
in FORTRAN

HDF5 Dataset

uint16 char int32 2x3x2 array of float32

Datatype:

Dataspace: Rank = 2
Dimensions = 3 x 5

3

5

VVV
V V V
V V V

HDF5 Dataset with Compound Datatype

Dataset Layout: How are data elements stored?

Chunked
Better access time for
subsets; extendible;
can have filters (e.g.
compression)

Improves storage
efficiency,
transmission speed,
some CPU cost to
perform filter

Contiguous
(default)

Data elements stored
physically adjacent
to each other

Conceptual Array Data in the file

Chunked
w/Filters
(compression)

Dataset Layout: How are data elements stored?

External

Virtual

Data elements stored
outside the HDF5 file,
possibly in another
file format and / or
multiple files
Data elements stored
in “source” datasets,
in the same or other
HDF5 files, using
selections to map

Compact
Data elements stored
directly within
object’s metadata

Conceptual Array Data in the file

Dataset
Object Header

Dataset
Object Header

Dataset Object Header

HDF5 Attributes

• Attributes “decorate” HDF5 objects
• Typically contain user metadata
• Similar to “key-value pairs”:

– Have a unique name (for that object) and a value

• Analogous to a dataset
– “Value” is an array described by a datatype and a

dataspace
– However, attributes do not support partial I/O operations;

nor can they be compressed or extended

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:

Serial Number: 99378920

Date: 3/13/09

Configuration: Standard 3

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Parameters
10;100;1000

Timestep
36,000

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

Groups can contain
links to objects
in other files

Objects can be linked
to from more than
one group

Groups can contain
links that create
cycles / graphs

HDF5 SOFTWARE

Home page:
– https://www.hdfgroup.org/solutions/hdf5

Releases:
– Latest: 1.12.0, with 1.12.1 coming in Fall 2020
– Also supported: 1.10.6 and 1.8.21

Source Distribution:
– https://github.com/HDFGroup/hdf5
– Includes optional language wrappers: C++, FORTRAN, and Java

• Python available: https://www.h5py.org
– Includes optional High-Level APIs
– Also command-line utilities (h5dump, h5repack, h5diff, …) and compile scripts

Pre-built binaries:
– https://www.hdfgroup.org/downloads/hdf5
– When possible, includes C, C++, FORTRAN , and High Level libraries.

• Check ./lib/libhdf5.settings file for installed options
– Built with and require the SZIP and ZLIB external libraries

HDF5 Download Info

https://www.hdfgroup.org/solutions/hdf5
https://github.com/HDFGroup/hdf5
https://www.h5py.org/
https://www.hdfgroup.org/downloads/hdf5

Useful HDF5 Tools For New Users
h5dump:

Tool to “dump” or display contents of HDF5 files

h5cc, h5c++, h5fc:
Scripts to compile applications (similar to “mpicc”)

HDFView:
Java browser to view HDF5 files:
https://support.hdfgroup.org/products/java/hdfview/

HDF5 Examples in C, C++, FORTRAN, Java, Python, Matlab:
https://portal.hdfgroup.org/display/HDF5/HDF5+Examples

https://support.hdfgroup.org/products/java/hdfview/
https://portal.hdfgroup.org/display/HDF5/HDF5+Examples

PROGRAMMING MODEL AND API

HDF5 File
Format

File Split
Files

File on
Parallel
Filesystem

Other

Virtual File
Layer

POSIX
I/O

Split
Files

MPI I/O Custom

Internals Memory
Mgmt

Datatype
Conversion

I/O
Filters

Chunked
Storage

Version
Compatibility

et cetera…

Data Model Objects
Files, Groups, Datasets,

Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 L
ib

ra
ry

St
or

ag
e

netCDF-4High Level
APIs

HDFview

Ap
ps h5dump

Java
H5Hut

API

C++/FORTRAN/Python

Infrastructure
Datatype, Dataspace, IDs, …

APIs

HDF5 Software Layers & Storage

…

The HDF5 API

• C, C++, FORTRAN, Java, and .NET bindings
• IDL, MATLAB, Python (H5Py, PyTables), …
• C routines begin with prefix: H5?

? corresponds to the type of object the function acts on

Example Functions:

H5D: Dataset interface e.g., H5Dread
H5F: File interface e.g., H5Fopen
H5S: dataSpace interface e.g., H5Sclose

The HDF5 API

• For flexibility, the API is extensive
• 600+ functions!

• This can be daunting… but there is hope
• A few functions can do a lot!
• Start simple
• Incrementally build up knowledge and code as more

features are needed

Victorinox
Swiss Army
Cybertool 34

• Typical for C:
– Object is opened or created
– Object is accessed, possibly many times
– Object is closed

• Properties of object or operation are optionally
defined:
• Creation properties (e.g., use chunking storage)
• Access properties

General Programming Paradigm

H5Fcreate (H5Fopen) create (open) File

H5Screate_simple create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread / H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

Core API Functions

DataSpaces: H5Sselect_hyperslab (Partial I/O)
H5Sselect_elements (Partial I/O)
H5Dget_space

DataTypes: H5Tcreate, H5Tcommit, H5Tclose
H5Dget_type, H5Tequal, H5Tget_native_type

Groups: H5Gcreate / H5Gopen, H5Gclose

Attributes: H5Acreate / H5Aopen_name
H5Aread, H5Awrite, H5Aclose

Property Lists: H5Pcreate
H5Pset_chunk, H5Pset_deflate
H5Pset_fapl_mpio, H5Pset_dxpl_mpio
H5Pclose

Other API prefixes: H5E – Errors; H5I – IDs; H5L – Links;
H5O – Objects; (and other specialty ones)

Other Common Functions

PARALLEL HDF5

• “Data” / “Raw Data”
– “problem-size” data, e.g., large arrays

• “Metadata” – is an overloaded term
• In this presentation: Metadata “=” HDF5 metadata

– For each piece of application metadata, there may be
many associated pieces of HDF5 metadata

– There are also other sources of HDF5 metadata
• Chunk indices, heaps to store group links and indices to look them

up, object headers, etc.

Terminology

• Take advantage of high-performance parallel I/O
while reducing complexity
– Use a high-level I/O layer instead of POSIX or MPI-IO
– Use only a single (or a few) shared files

• “Friends don’t let friends use file-per-process!” J

• Productivity, Performance, Portability, and
Ecosystem
– Reduce amount of application code to maintain
– Rely on HDF5 to optimize for underlying storage system
– Let HDF5 bear burden of backward / forward compatibility
– Take advantage of the vast HDF5 ecosystem

Why Parallel HDF5?

• Parallel vs. Serial HDF5
• Implementation Layers
• HDF5 files in a parallel file system
• Parallel HDF5 I/O modes: collective vs. independent
• Data and Metadata I/O

What We’ll Cover

• Consistency semantics
• Virtual Object Layer (VOL)
• Single Writer / Multiple-Reader (SWMR)
• Virtual Datasets (VDS)
• Asynchronous I/O
• Independent Metadata Modification
• …

Contact me on Slack about these after the presentation!

What We Won’t Cover

• Parallel HDF5 allows multiple processes in an MPI
application to perform I/O to a single HDF5 file

• Uses a standard parallel I/O interface: MPI-IO
– Portable to different platforms

• Parallel HDF5 files are HDF5 files, conforming to the
HDF5 File Format Specification

• The “Parallel HDF5” API consists of:
– The standard HDF5 API
– A few extra properties and calls
– A parallel “etiquette”

[MPI-] Parallel vs. Serial HDF5

HDF5 Application

Compute
node

Compute
node

Compute
node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Switch network + I/O servers

Disk architecture and layout of data on disk

PHDF5 Implementation Layers

H5Fcreate (H5Fopen) create (open) File

H5Screate_simple create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset

H5Dclose close Dataset

H5Sclose close dataSpace

H5Fclose close File

Standard HDF5 “Skeleton”

Starting with a simple serial HDF5 program:

file_id = H5Fcreate(FNAME, …, H5P_DEFAULT);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

space_id, …);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, H5P_DEFAULT, …);
…

Example of a Parallel HDF5 C Program

A parallel HDF5 program has a few extra calls:

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME, …, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

space_id, …);
dxpl_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, dxpl_id, …);
…

MPI_Finalize();

Example of a Parallel HDF5 C Program

• Parallel HDF5 opens a shared file with an MPI communicator
– Returns a file ID (as usual)
– All future access to the file via that file ID (as usual)
– However, this file ID can be used to open datasets and then perform collective data

I/O operations
• Different files can be opened via different communicators

• All processes must participate in collective HDF5 APIs
• All HDF5 APIs that modify the HDF5 namespace and structural metadata

are collective!
– File ops., group structure, dataset dimensions, object life-cycle, etc.

• Debugging metadata hangs:
– Can “bisect” with H5Fflush in source code
– Or, can set H5_COLL_API_SANITY_CHECK environment variable:

• “setenv H5_COLL_API_SANITY_CHECK 1”

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

Parallel HDF5 “Etiquette”

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

• For more examples how to write different data
patterns see:

https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

Parallel HDF5 Tutorial Examples

https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

File Dataset data

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple “disks” (e.g. Lustre OSTs) depending on
the stripe size and stripe count with which the file was created.

And it gets worse before it gets better…

In a Parallel File System

Dataset
header

• HDF5 Object header, separate from dataset data
• Data stored in one contiguous block in HDF5 file

Application memory

Dataset data

Dataset data

HDF5 - Contiguous Storage

File Dataset
header

Metadata cache
Dataset header

………….
Datatype

Dataspace
………….

Attributes
…

Application memory

• Dataset data is divided into equal-sized blocks (chunks)
• Each chunk is stored separately in the HDF5 file, located

by a “chunk index”
Metadata cache

Dataset header
………….

Datatype
Dataspace
………….

Attributes
…

File

Dataset data

A DC B
Dataset
header

Chunk
index

Chunk
index

A B C D

HDF5 - Chunked Storage

File A DC B

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on the stripe size and stripe
count with which the file was created.

Dataset
header

Chunk
index

HDF5 In a Parallel File System

• Collective I/O attempts to combine multiple smaller
independent I/O ops into fewer larger ops.
– Neither mode is preferable a priori

• MPI definition of collective calls:
– All processes of the communicator must participate in calls

in the same order:
Process 1 Process 2
call A(); è call B(); call A(); è call B(); **right**
call A(); è call B(); call B(); è call A(); **wrong**

– Independent calls are not collective J
– Collective calls are not necessarily synchronous, nor must

they require communication
• It could be that only internal state for the communicator changes

Collective vs. Independent I/O

Data
• “Problem-sized”
• I/O can be independent or

collective

Metadata
• “Small”
• Reads can be independent or

collective
• All modifications must be

collective

Data and Metadata I/O in Parallel HDF5

• Improvement targets:
– User-level metadata /

namespace design
– Use the latest library version,

if possible
– Metadata cache

• In desperate cases, take
control of evictions

• Improvement targets:
– Alignment
– Avoid datatype conversion
– Reduce I/O frequency
– Pay attention to layout on disk

• Different I/O strategies for
chunked layout

– Aggregation and balancing

Don’t Forget! It’s a Multi-Layer Problem

Application

HDF5
(Collective metadata I/O, …)

MPI-IO
(# of collective buffer nodes, collective buffer size, …)

Parallel File System
(Lustre stripe count and size, …)

Storage Hardware

